Mean Motion Resonances from Planet-planet Scattering
نویسندگان
چکیده
Planet-planet scattering is the leading mechanism to explain the large eccentricities of the observed exoplanet population. However, scattering has not been considered important to the production of pairs of planets in mean motion resonances (MMRs). We present results from a large number of numerical simulations of dynamical instabilities in 3-planet systems. We show that MMRs arise naturally in about five percent of cases. The most common resonances we populate are the 2:1 and 3:1 MMRs, although a wide variety of MMRs can occur, including high-order MMRs (up to eleventh order). MMRs are generated preferentially in systems with uneven mass distributions: the smallest planet is typically ejected after a series of close encounters, leaving the remaining, more massive planets in resonance. The distribution of resonant planets is consistent with the phase-space density of resonant orbits, meaning that planets are randomly thrown into MMRs rather than being slowly pulled into them. It may be possible to distinguish between MMRs created by scattering vs. convergent migration in a gaseous disk by considering planetary mass ratios: resonant pairs of planets beyond ∼ 1 AU with more massive outer planets are likely to have formed by scattering. In addition, scattering may be responsible for pairs of planets in high-order MMRs (3:1 and higher) that are not easily populated by migration. The frequency of MMRs from scattering is comparable to the expected survival rate of MMRs in turbulent disks. Thus, planet-planet scattering is likely to be a major contributor to the population of resonant planets. Subject headings: planetary systems: formation — methods: n-body simulations
منابع مشابه
Se p 20 09 Interaction of a giant planet in an inclined orbit with a circum - stellar disk
We investigate the dynamical evolution of a Jovian–mass planet injected into an orbit highly inclined with respect to its nesting gaseous disk. Planet–planet scattering induced by convergent planetary migration and mean motion resonances may push a planet into such an out of plane configuration with inclinations as large as 20 − 30. In this scenario the tidal interaction of the planet with the ...
متن کاملWhat to Expect from Transiting Multiplanet Systems
So far radial velocity (RV) measurements have discovered ∼ 25 stars to host multiple planets. The statistics imply that many of the known hosts of transiting planets should have additional planets, yet none have been solidly detected. They will be soon, via complementary search methods of RV, transit-time variations (TTV) of the known planet, and transits of the additional planet. When they are...
متن کاملIs the HR 8799 extrasolar system destined for planetary scattering?
The recent discovery of a three-planet extrasolar system of HR 8799 by Marois et al. is a breakthrough in the field of the direct imaging. This great achievement raises questions on the formation and dynamical stability of the HR 8799 system, because Keplerian fits to astrometric data are strongly unstable during ∼ 0.2 Myr. We search for stable, self-consistent N-body orbits with the so called ...
متن کاملReducing the Probability of Capture into Resonance
A migrating planet can capture planetesimals into mean motion resonances. However, resonant trapping can be prevented when the drift or migration rate is sufficiently high. Using a simple Hamiltonian system for first and second order resonances, we explore how the capture probability depends on the order of the resonance, drift rate and initial particle eccentricity. We present scaling factors ...
متن کاملProduction of star-grazing and impacting planetesimals via orbital migration of extrasolar planets
During orbital migration of a giant extrasolar planet via ejection of planetesimals (Murray et al. 1998), inner mean motion resonances can be strong enough to cause planetesimals to graze or impact the star. We integrate numerically the motions of particles which pass through the 3:1 or 4:1 mean motion resonances of a migrating Jupiter mass planet. We find that many particles can be trapped in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008